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Asymptotic behavior of two Bernstein-type operators is studied in this paper. In
the first case, the rate of convergence of a Bernstein operator for a bounded func-
tion f is studied at points x where f (x+) and f (x&) exist. In the second case, the
rate of convergence of a Sza� sz operator for a function f whose derivative is of bounded
variation is studied at points x where f (x+) and f (x&) exist. Estimates of the rate
of convergence are obtained for both cases and the estimates are the best possible
for continuous points. � 2001 Academic Press

1. INTRODUCTION

For a function f defined on [0, 1] the Bernstein operator Bn is defined
by

Bn( f, x)= :
n

k=0

f \k
n+ pnk(x), pnk(x)=\n

k+ xk(1&x)n&k. (1)

For a function f defined on [0, �) the Sza� sz operator Sn is defined by

Sn( f, x)= :
�

k=0

f \k
n+ qnk(x), qnk(x)=e&nx (nx)k

k!
. (2)
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In 1983 Cheng [1] proved that

Bn(sgn(t&x), x)=O(n&1�6(x(1&x))&5�2), x # (0, 1), (3)

where

1, t>0

sgn(t)={0, t=0

&1 t<0.

This result was later improved by both Guo and Khan [3], and Zeng and
Piriou [4].

Bn(sgn(t&x), x)=O(n&1�2(x(1&x))&1�2), x # (0, 1). (4)

As far as the rate of convergence of Bernstein operator for |t&x| is concerned,
Bojanic and Cheng [2] proved the following asymptotic form:

Bn( |t&x|, x)=\2x(1&x)
? +

1�2 1

- n
+O(n&1(x(1&x))&1�2), x # (0, 1).

(5)

These equations, Eqs. (3)�(5), have been used to estimate the rate of
convergence of operator (1) for functions in BV[0, 1] and functions in
DBV[0, 1]=[h | h$ # BV[0, 1]] (cf. [1�4]). In this paper, using results
from probability theory, we shall prove the following result:

Bn(sgn(t&x), x)=
2x&1+6(nx&[nx])&3 sgn(nx&[nx])

3 - 2?x(1&x) - n
+o(n&1�2),

x # (0, 1). (6)

As far as Sza� sz operator is concerned, in 1991 Bojanic and Khan [6]
proved that

Sn( |t&x|, x)=\2x
? +

1�2 1

- n
+O(n&1). (7)

In present paper we shall give a better estimate that

n3�2
- x }Sn( |t&x|, x)&�2x

?
1

- n }�2, x # [0, �). (8)
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Two classes of functions IB and IDB , defined as follows, will be considered.

IB=[ f : f is bounded on [0, 1]],

and

IDB={h: h(x)&h(0)=|
x

0
f (t) dt,

f is bounded in every finite subinterval of [0, �), x # [0, �).=
(9)

It is clear that class IB is more general than BV[0, 1].
We will use the result in Eq. (6) to estimate the rate of convergence of

Bernstein operator for f # IB at those points x that f (x+) and f (x&) exist.
The result in Eq. (8) will be used to estimate the rate of convergence of
Sza� sz operator for h # IDB at those points x that f (x+) and f (x&) exist.

2. RATE OF CONVERGENCE OF BERNSTEIN OPERATORS

In this section we consider the rate of convergence of Bernstein operator
(1) for function f # IB . We introduce the following three quantities first

0x&( f, $1)= sup
t # [x&$1 , x]

| f (t)&f (x)|,

0x+( f, $2)= sup
t # [x, x+$2]

| f (t)&f (x)|,

0(x, f, *)= sup
t # [x&x�*, x+(1&x)�*]

| f (t)&f (x)|,

where f # IB , x # [0, 1] is fixed, 0�$1�x, 0�$2�1&x and *�1.
It is clear that

(i) 0x&( f, $1) and 0x+( f, $2) are monotone non-decreasing with
respect to $1 and $2 , respectively; 0(x, f, *) is monotone non-increasing
with respect to *.

(ii) lim$1 � 0+ 0x&( f, $1)=0, lim$2 � 0+ 0x+( f, $2)=0, lim* � �

0(x, f, *)=0, if f is continuous on the left, continuous on the right, or
continuous at the point x, respectively.

(iii) 0x&( f, $1)�0(x, f, x�$1) and 0x+( f, $2)�0(x, f, (1&x)�$2).

(iv) 0x&( f, $1) � V x
x&$1

( f ), 0x+( f, $2) � V x+$2
x ( f ), 0(x, f, *) �

V x+(1+x)�*
x&x�* ( f ),
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where V b
a ( f ) denotes the total variation of the function f which is of bounded

variation on [a, b].
The main result of this section is shown below.

Theorem 1. Given f # IB , f (x+) and f (x&) exist at a fixed point
x # (0, 1). Define gx(t) as

f (t)&f (x+), x<t�1;

gx(t)={0, t=x; (10)

f (t)&f (x&), 0�t<x.

Then for n sufficiently large we have

}Bn( f, x)&
f (x+)+f (x&)

2
&

+( f, n, x)

- 2? x(1&x) - n }
�

2
nx(1&x)

:
n

k=1

0(x, gx , - k)+o(n&1�2), (11)

where

+( f, n, x)=( f (x+)&f (x&))(nx&[nx]+(x&2)�3)

+( f (x)&f (x&))(1&sgn(nx&[nx])). (12)

From Theorem 1 we get immediately

Corollary. Let f # IB , f (x+) and f (x&) exist at a fixed point
x # (0, 1). If 0(x, gx , *)=o(*&1), then

Bn( f, x)=
f (x+)+f (x&)

2
+

+( f, n, x)

- 2?x(1&x) - n
+o(n&1�2).

To prove Theorem 1 we need a few preliminary results.

Lemma 1. For x # (0, 1) there holds

pn, [nx](x)=
1

- 2?x(1&x) - n
+o(n&1�2), (13)

and

pn, [nx]+1(x)=
1

- 2?x(1&x) - n
+o(n&1�2). (14)
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Proof. Using Stirling's formula n!=(n�e)n
- 2?n e%n �12n, 0<%n<1, we

have

pn, [nx](x)&
1

- 2?x(1&x) - n

=
n!

[nx]! (n&[nx])!
x[nx](1&x)n&[nx]&

1

- 2?x(1&x) - n

=
1

- 2?x(1&x) - n \ec(n, x) \ nx
[nx]+

[nx]+1�2

\ n&nx
n&[nx]+

n&[nx]+1�2

&1+ ,

where ec(n, x)=e%n�12n&%[nx] �12[nx]&%n&[nx] �12(n&[nx]) � 1 (n � +�).
Straightforward computation shows that

lim
n � � \ nx

[nx]+
[nx]+1�2

\ n&nx
n&[nx]+

n&[nx]+1�2

=1.

Hence, (13) holds. (14) can be proved similarly.
The following Lemma is an asymptotic form of the central limit theorem

in probability theory. Its proof and further discussion can be found in
Feller [5, pp. 540�542].

Lemma 2. Let [!k]�
k=1 be a sequence of independent and identically

distributed random variables with the expectation E(!1)=a1 , the variance
E(!1&a1)2=_2>0, E(!1&a1)3<�, and let Fn stand for the distribution
function of �n

i=1 (!i&a1)�_ - n. If Fn is a lattice distribution and F *
n is a

polygonal approximant of Fn (see Definition 1), then the following equation
holds for all the points of Fn

F *
n (t)&

1

- 2? |
t

&�
e&+ 2 �2 du&

E(!1&a1)3

6_3
- n

(1&t2)
1

- 2?
e&t 2 �2=o(n&1�2).

(15)

Definition 1 [5, p. 540, Definition]. Let F be concentrated on the
lattice of points b\nh, but on no sublattice (that is, h is the span of F ).
A polygonal approximant F* to F is a distribution function with a polygonal
graph with vertices at the midpoints b\(n+1�2)h lying on the graph of F.
Thus

F*(t)=F(t) if t=b\(n+1�2)h; (16)

F*(t)= 1
2 [F(t)+F(t&)] if t=b\nh. (17)
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Lemma 3. For every x # (0, 1) the following equation holds

Bn(sgn(t&x), x)=
2x&1+6(nx&[nx])&3 sgn(nx&[nx])

3 - 2?x(1&x) - n
+o(n&1�2).

(18)

Proof. Let [!i]�
i=1 be a sequence of independent random variables with

the same two-point distribution P(!i=j)=x j(1&x)1&j, j=0, 1 and x # [0, 1]
is a parameter. Direct calculation gives E!1=x, E(!1&E!1)2=x(1&x)
and E(!1&E!1)3=x(1&x)(1&2x)<� (cf. [7, p. 14]). Let 'n=�n

i=1 ! i

and Fn stands for the distribution function of �n
i=1 (!i&a1)�_ - n. Then the

probability distribution of the random variable 'n is

P('n=k)=\n
k+ xk(1&x)n&k=pnk(x).

Hence

Bn(sgn(t&x), x)=& :
k<nx

pnk(x)+ :
k>nx

pnk(x)

=& :
k<nx

pnk(x)& :
k�nx

pnk(x)+1

=&P('n<nx)&P('n�nx)+1=&Fn(0&)&Fn(0)+1

=2F *
n (0)&Fn(0&)&Fn(0)+1&2F *

n (0). (19)

From Lemma 2 we get

1&2F *
n (0)=&

2E(!1&a1)3

6_3
- n

1

- 2?
+o(n&1�2)

=
2x&1

3 - 2?x(1&x)

1

- n
+o(n&1�2). (20)

In the following we estimate 2F *
n (0)&Fn(0&)&Fn(0).

If nx=[nx], then 0 is a lattice point of F. From (17) we get

2F *
n (0)&Fn(0&)&Fn(0)=0.

If nx{[nx], then

Fn(0)=Fn(0&)= :
k�[nx]

pnk(x),
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and we know distribution function F is a stepfunction. Hence Fn(t)=
�k�[nx] pnk(x) on the interval [([nx]&nx)�_ - n, ([nx]+1&nx)�_ - n).

For 0<nx&[nx]�1�2, from (17) and (16) it is known that

F *
n \[nx]&nx

_ - n +=
1
2 \ :

k�[nx]&1

pnk(x)+ :
k�[nx]

pnk(x)+ ,

and

F *
n \[nx]&nx+1�2

_ - n += :
k�[nx]

pnk(x).

By direct calculation we get the expression of F *
n (t) on interval w([nx]&nx)�

_ - n, ([nx]&nx+1�2)�_ - nx

F *
n (t)=_ - n pn, [nx](x) t+ :

k�[nx]

pnk(x)+(nx&[nx]&1�2) pn, [nx](x).

Hence, for 0<nx&[nx]�1�2

F *
n (0)= :

k�[nx]

pnk(x)+(nx&[nx]&1�2) pn, [nx](x).

Similarly, for 1�2<nx&[nx]<1

F *
n (0)= :

k�[nx]

pnk(x)+(nx&[nx]&1�2) pn, [nx]+1(x).

Consequently

2F *
n (0)&Fn(0&)&Fn(0)

0, nx=[nx]

={(2nx&2[nx]&1) pn, [nx](x), [nx]<nx�[nx]+1�2
(2nx&2[nx]&1) pn, [nx]+1(x), [nx]+1�2<nx<[nx]+1.

(21)

Now (18) follows by combining (19)�(21) with Lemma 1.

Proof of Theorem 1. For any f # IB , if f (x+) and f (x&) exist at x, we
decompose f into

f (t)=
f (x+)+f (x&)

2
+gx(t)+

f (x+)&f (x&)
2

sgn(t&x)

+$x(t) _ f (x)&
f (x+)+f (x&)

2 & , (22)
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where gx(t) is defined in (10) and

$x(t)={1,
0,

t=x
t{x.

Direct calculation gives

Bn($x , x)=(1&sgn(nx&[nx])) pn, [nx](x). (23)

From (22), (23), Lemmas 1, 2, and simple computation we get

}Bn( f, x)&
f (x+)+f (x&)

2
&

+( f, n, x)

- 2? x(1&x) }�|Bn( gx , x)|+o(n&1�2),

(24)

where + is defined in (12).
Next we estimate |Bn( gx , x)|. Recall the Lebesgue�Stieltjes integral

representation. We have

Bn( gx , x)=|
1

0
gx(t) dtKn(x, t), (25)

where

Kn(x, t)={�k�nt pnk(x),
0,

0<t�1
t=0.

We decompose the integral of (25) into three parts as follows:

|
1

0
gx(x) dt Kn(x, t)=21, n( gx)+22, n( gx)+23, n( gx),

where

21, n( gx)=|
x&x�- n

0
gx(t) dt Kn(x, t),

22, n( gx)=|
x+(1&x)�- n

x&x�- n
gx(t) dtKn(x, t)

23, n( gx)=|
1

x+(1&x)�- n
gx(t) dt Kn(x, t).
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We shall evaluate 21, n( gx), 22, n( gx) and 23, n( gx) with the quantities
0x&( gx , $1), 0x+( gx , $2) and 0(x, gx , *) (for simplicity, in the following
we shall write them as 0x&($1), 0x+($2) and 0(x, *), respectively). First,
for 22, n( gx) note that gx(x)=0, we have

|22, n( gx)|�|
x+(1&x)�- n

x&x�- n
| gx(t)&gx(x)| dt Kn(x, t)�0(x, - n). (26)

To estimate |21, n( gx)|, note that 0x&($1) is monotone non-decreasing for
$1 , hence it follows that

|21, n( gx)|= } |
x&x�- n

0
gx(t) dtKn(x, t) }�|

x&x�- n

0
0x&(x&t) dt Kn(x, t).

Using partial integration with y=x&x�- n, we have

|
x&x�- n

0
0x&(x&t) dtKn(x, t)

�0x&(x&y) Kn(x, y+)+|
y

0
K� n(x, t) d(&0x&(x&t)), (27)

where K� n(x, t) is the normalized form of Kn(x, t). Since K� n(x, t)�Kn(x, t)
and Kn(x, y+)=Kn(x, y) on (0, 1), from (27) and using the well-known
result K� n(x, t)�Kn(x, t)��k�nt pnk(x)�x(1&x)�n(t&x)2 it follows that

|21, n( gx)|�0x&(x&y)
x(1&x)
n(x&y)2+

x(1&x)
n |

y

0

1
(x&t)2 d(&0x&(x&t)).

(28)

With the fact that

|
y

0

1
(x&t)2 d(&0x&(x&t))

=&
1

(x&t)2 0x&(x&t) }
y

0

+|
y

0
0x&(x&t)

2
(x&t)3 dt

=&
1

(x&y)2 0x&(x&y)+
1
x2 0x&(x)+|

y

0
0x&(x&t)

2
(x&t)3 dt,

we have from (28)

|21, n( gx)|�
x(1&x)

nx2 0x&(x)+
x(1&x)

n |
x&x�- n

0
0x&(x&t)

2
(x&t)3 dt.
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Putting t=x&x�- u for the last integral we get

|
x&x�- n

0
0x&(x&t)

2
(x&t)3 dt=

1
x2 |

n

1
0x&(x�- u) du.

Consequently

|21, n( gx)|�
1&x

nx \0x&(x)+|
n

1
0x&(x�- u) du+ . (29)

Using a similar method to estimate |23, n( gx)|, we get

|23, n( gx)|�
x

n(1&x) \0x+(1&x)+|
n

1
0x+((1&x)�- u) du+ . (30)

From (26), (29) and (30) it follows that

|Bn( gx , x)|�0(x, - n)+\1&x
nx

+
x

n(1&x)+\0(x, 1)+|
n

1
0(x, - u) du+ .

(31)

By monotonicity of 0(x, *) and the fact that (1&x)2+x2�1, 1�(n&1)�
1�nx(1&x) (n>1) we have

|Bn( gx , x)|�
1

n&1
:
n

k=2

0(x, - k)+
1

nx(1&x)
0(x, 1)

+
1

nx(1&x)
:
n

k=1

0(x, - k)

�
2

nx(1&x)
:
n

k=1

0(x, - k). (32)

Theorem 1 now follows from (24) and (32).

3. RATE OF CONVERGENCE OF SZA� SZ OPERATORS

In this section we consider the rate of convergence of Sza� sz operator (2)
for function h # IDB (defined in (9)). First we introduce the quantity

0*(x, f, $)= sup
t # [x&$, x+$]

| f (t)&f (x)|,

where f is bounded in every finite subinterval of [0, �).
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The main result of this section is as follows:

Theorem 2. Let h be a function in IDB and let h(t)=O(e:t log t) for some
:>0 as t � �. If f (x+) and f (x&) exist at a fixed point x # (0, �), and
we write {=f (x+)&f (x&), then for n sufficiently large we have

}Sn(h, x)&h(x)&{(x�2?)1�2 1

- n }�
|{|

n3�2x1�2+
4x+2

n
:

[- n]

k=1

0*(x, .x , x�k)

+O(1)
(2x+1)(2x+1):

1+- nx
(e�4)nx, (33)

where [- n] is the greatest integer not exceeding - n and .x(t) is defined as

f (t)&f (x+), x<t<�;

.x(t)={0, t=x;

f (t)&f (x&), 0�t<x.

In view of the fact that (1�- n) �[- n]
k=1 0(x, .x , k) � 0 (n � �), from

Theorem 2 we get the following asymptotic formula

Sn(h, x)=h(x)+(x�2?)1�2 {

- n
+o \ 1

- n+ , (34)

if h satisfies the assumptions of Theorem 2. In particular, (34) is true for
h # DBV[0, �). For Bernstein operator Bn(h, x) Bojanic and Cheng [2]
proved a similar asymptotic formula for h # DBV[0, 1].

The following lemma is needed for proving Theorem 2.

Lemma 4. For x # [0, �) there holds

n3�2
- x }Sn( |t&x|, x)&�2x

?
1

- n }�2. (35)

Proof. By the fact that Sn(t, x)=x we have

Sn( |t&x|, x)=2 :
[nx]

k=0
\x&

k
n+

(nx)k

k!
e&nx

=2 :
[nx]

k=0

x
(nx)k

k!
e&nx&2 :

[nx]&1

k=0

x
(nx)k

k!
e&nx

=2xe&nx (nx)[nx]

[nx]!
.

If x<1�n, then [nx]=0. Obviously, 0�2 - nx e&nx�2.
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Hence

n3�2
- x }Sn( |t&x|, x)&�2x

?
1

- n }=nx } 2 - nx e&nx&�2
? }�2.

If x�1�n, then [nx]�1. Using Stirling's formula n!=(n�e)n
- 2?n e%n�12n,

0<%n<1, we get

n3�2
- x \Sn( |t&x|, x)&�2x

?
1

- n+
=�2

?
nx \e&nx+[nx] \ nx

[nx]+
[nx]+1�2

ec&1+
=�2

?
nx(ec&1)+ec �2

?
nx \e&nx+[nx] \ nx

[nx]+
[nx]+1�2

&1+ ,

where

e&1�(12[nx])�ec�1. (36)

Thus, from expansion formula ec=��
i=0 ci �i !, it is not difficult to show

that

nx |ec&1|�1�4.

On the other hand, write nx=[nx]+= (0�=<1), then

ec �2
?

nx } e&nx+[nx] \ nx
[nx]+

[nx]+1�2

&1 }
=ec �2

?
nx

[nx]
[nx] } e&= \1+

=
[nx]+

[nx]+1�2

&1 }
=ec �2

?
nx

[nx]
[nx] \e&= \1+

=
[nx]+

[nx]+1�2

&1+
�2 �2

?
[nx] \e&= \1+

=
[nx]+

[nx]+1�2

&1+ .

It is easy to verify that

[nx] \e&= \1+
=

[nx]+
[nx]+1�2

&1+�=�1.
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Consequently

n3�2
- x }Sn( |t&x|, x)&�2x

?
1

- n }�
- 2

4 - ?
+

2 - 2

- ?
�2.

The proof of Lemma 4 is completed.

Proof of Theorem 2. By straightforward computation we find that (cf. [2,
pp. 138�139])

Sn(h, x)&h(x)=
f (x+)&f (x&)

2
Sn( |t&x|, x)

&Ln(h, x)+Rn(h, x)+Qn(h, x), (37)

where

Ln(h, x)= :
k<nx \|

x

k�n
.x(t) dt+ qnk(x),

Rn(h, x)= :
nx<k�2nx \|

k�n

x
.x(t) dt+ qnk(x)

and

Qn(h, x)= :
k>2nx \|

x

k�n
.x(t) dt+ qnk(x).

Define

K� n(x, t)= :
k�nt

qnk(x), 0�t�x.

Then

Ln(h, x)=|
x

0 \|
x

t
.x(&) d&+ dt K� n(x, t)+\|

x

0
.x(&) d&+ K� n(x, 0)

=\|
x

t
.x(&) d&+ K� n(x, t) }

x

0

+|
x

0
K� n(x, t) .x(t) dt

+\|
x

0
.x(&) d&+ K� n(x, 0)

=|
x

0
K� n(x, t) .x(t) dt=\|

x&x�- n

0
+|

x

x&x�- n+ K� n(x, t) .x(t) dt.
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Since .x(x)=0, K� n(x, t)�1, by monotonicity of 0*(x, .x , $) we have

} |
x

x&x�- n
K� n(x, t) .x(t) dt }� x

- n
0*(x, .x , x�- n)�

2x
n

:
[- n]

k=1

0*(x, .x , x�k).

Again, for t<x it is known that K� n(x, t)=�k�nt qnk(x)�(1�(x&t)2)
Sn((t&x)2, x)�x�n(x&t)2. Hence

} |
x&x�- n

0
K� n(x, t) .x(t) dt }�x

n |
x&x�- n

0
0*(x, .x , x&t)

dt
(x&t)2 .

Replacing the variable t by x&x�u for the last integral, then

} |
x&x�- n

0
K� n(x, t) .x(t) dt }� x

nx |
- n

1
0*(x, .x , x�u) du

�
1
n

:
[- n]

k=1

0*(x, .x , x�k).

Consequently

|Ln(h, x)|�
2x+1

n
:

[- n]

k=1

0*(x, .x , x�k). (38)

A similar estimate gives

|Rn(h, x)|�
2x+1

n
:

[- n]

k=1

0*(x, .x , x�k). (39)

Finally by the assumption h(t)=O(e:t log t) for some :>0 as t � �, and by
direct computation it can be shown that (cf. [9, (31), p. 320])

|Qn(h, x)|=O(1)
(2x+1) (2x+1):

1+- nx
(e�4)nx. (40)

Theorem 2 now follows by combining (37)�(40) with Lemma 4.

Remark. If f is continuous at x, then (11) becomes

|Bn( f, x)&f (x)|�
2

nx(1&x)
:
n

k=1

0(x, f, - k), (41)
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and (33) becomes

|Sn(h, x)&h(x)|�
4x+2

n
:

[- n]

k=1

0*(x, .x , x�k)+O(1)
(2x+1)(2x+1):

1+- nx
(e�4)nx.

(42)

Inequalities (41) and (42) are the best possible we can get in the sense that
they cannot be improved any further asymptotically (see [1, 4, and 8]).

ACKNOWLEDGMENT

The authors thank the associate editor for several important comments and suggestions
which improve the quality of the paper significantly.

REFERENCES

1. F. Cheng, On the rate of convergence of Bernstein polynomials of functions of bounded
variation, J. Approx. Theory 39 (1983), 259�274.

2. R. Bojanic and F. Cheng, Rate of convergence of Bernstein polynomials for functions with
derivative of bounded variation, J. Math. Anal. Appl. 141 (1989), 136�151.

3. S. Guo and M. Khan, On the rate of convergence of some operators on functions of bounded
variation, J. Approx. Theory 58 (1989), 90�101.

4. X. M. Zeng and A. Piriou, On the rate of convergence of two Bernstein�Be� zier type operators
for functions of bounded variation, J. Approx. Theory 95 (1998), 369�387.

5. W. Feller, ``An Introduction to Probability Theory and Its Applications,'' Wiley, New York,
1971.

6. R. Bojanic and M. Khan, Rate of convergence of some operators of functions with derivatives
of bounded variation, Atti Sem Mat. Fis. Univ. Modena 39 (1991), 495�512.

7. G. G. Lorentz, ``Bernstein Polynomials,'' Univ. of Toronto Press, Toronto, 1953.
8. F. Cheng, On the rate of convergence of Sza� sz�Mirakyan operator for functions of bounded

variation, J. Approx. Theory 40 (1984), 226�241.
9. X. M. Zeng, On the rate of convergence of the generalized Sza� sz type operators for

functions of bounded variation, J. Math. Anal. Appl. 226 (1998), 309�325.

256 ZENG AND CHENG


	1. INTRODUCTION 
	2. RATE OF CONVERGENCE OF BERNSTEIN OPERATORS 
	3. RATE OF CONVERGENCE OF SZASZ OPERATORS 
	ACKNOWLEDGMENT 
	REFERENCES 

