On the Rates of Approximation of Bernstein Type Operators

Xiao-Ming Zeng ${ }^{1}$

Department of Mathematics, Xiamen University, Xiamen 361005, People's Republic of China
E-mail: xmzeng@jingxian.xmu.edu.cn
and

Fuhua (Frank) Cheng
Department of Computer Science, University of Kentucky, Lexington, Kentucky 40506-0046
E-mail: cheng@cs.engr.uky.edu

Communicated by Ranko Bojanic
Received October 17, 1999; accepted in revised form September 12, 2000; published online February 5, 2001

Asymptotic behavior of two Bernstein-type operators is studied in this paper. In the first case, the rate of convergence of a Bernstein operator for a bounded function f is studied at points x where $f(x+)$ and $f(x-)$ exist. In the second case, the rate of convergence of a Szász operator for a function f whose derivative is of bounded variation is studied at points x where $f(x+)$ and $f(x-)$ exist. Estimates of the rate of convergence are obtained for both cases and the estimates are the best possible for continuous points. © 2001 Academic Press

1. INTRODUCTION

For a function f defined on $[0,1]$ the Bernstein operator B_{n} is defined by

$$
\begin{equation*}
B_{n}(f, x)=\sum_{k=0}^{n} f\left(\frac{k}{n}\right) p_{n k}(x), \quad p_{n k}(x)=\binom{n}{k} x^{k}(1-x)^{n-k} . \tag{1}
\end{equation*}
$$

For a function f defined on $[0, \infty)$ the Szász operator S_{n} is defined by

$$
\begin{equation*}
S_{n}(f, x)=\sum_{k=0}^{\infty} f\left(\frac{k}{n}\right) q_{n k}(x), \quad q_{n k}(x)=e^{-n x} \frac{(n x)^{k}}{k!} . \tag{2}
\end{equation*}
$$

${ }^{1}$ Supported by NSFC 19871068 and Fujian Provincial Science Foundation of China.

In 1983 Cheng [1] proved that

$$
\begin{equation*}
B_{n}(\operatorname{sgn}(t-x), x)=O\left(n^{-1 / 6}(x(1-x))^{-5 / 2}\right), \quad x \in(0,1), \tag{3}
\end{equation*}
$$

where

$$
\operatorname{sgn}(t)= \begin{cases}1, & t>0 \\ 0, & t=0 \\ -1 & t<0\end{cases}
$$

This result was later improved by both Guo and Khan [3], and Zeng and Piriou [4].

$$
\begin{equation*}
B_{n}(\operatorname{sgn}(t-x), x)=O\left(n^{-1 / 2}(x(1-x))^{-1 / 2}\right), \quad x \in(0,1) . \tag{4}
\end{equation*}
$$

As far as the rate of convergence of Bernstein operator for $|t-x|$ is concerned, Bojanic and Cheng [2] proved the following asymptotic form:

$$
\begin{equation*}
B_{n}(|t-x|, x)=\left(\frac{2 x(1-x)}{\pi}\right)^{1 / 2} \frac{1}{\sqrt{n}}+O\left(n^{-1}(x(1-x))^{-1 / 2}\right), \quad x \in(0,1) . \tag{5}
\end{equation*}
$$

These equations, Eqs. (3)-(5), have been used to estimate the rate of convergence of operator (1) for functions in $B V[0,1]$ and functions in $D B V[0,1]=\left\{h \mid h^{\prime} \in B V[0,1]\right\}$ (cf. [1-4]). In this paper, using results from probability theory, we shall prove the following result:

$$
\begin{gather*}
B_{n}(\operatorname{sgn}(t-x), x)=\frac{2 x-1+6(n x-[n x])-3 \operatorname{sgn}(n x-[n x])}{3 \sqrt{2 \pi x(1-x)} \sqrt{n}}+o\left(n^{-1 / 2}\right) \\
x \in(0,1) \tag{6}
\end{gather*}
$$

As far as Szász operator is concerned, in 1991 Bojanic and Khan [6] proved that

$$
\begin{equation*}
S_{n}(|t-x|, x)=\left(\frac{2 x}{\pi}\right)^{1 / 2} \frac{1}{\sqrt{n}}+O\left(n^{-1}\right) . \tag{7}
\end{equation*}
$$

In present paper we shall give a better estimate that

$$
\begin{equation*}
n^{3 / 2} \sqrt{x}\left|S_{n}(|t-x|, x)-\sqrt{\frac{2 x}{\pi}} \frac{1}{\sqrt{n}}\right| \leqslant 2, \quad x \in[0, \infty) . \tag{8}
\end{equation*}
$$

Two classes of functions I_{B} and $I_{D B}$, defined as follows, will be considered.

$$
I_{B}=\{f: f \text { is bounded on }[0,1]\},
$$

and

$$
I_{D B}=\left\{h: h(x)-h(0)=\int_{0}^{x} f(t) d t,\right.
$$

f is bounded in every finite subinterval of $[0, \infty), \quad x \in[0, \infty)$.

It is clear that class I_{B} is more general than $B V[0,1]$.
We will use the result in Eq. (6) to estimate the rate of convergence of Bernstein operator for $f \in I_{B}$ at those points x that $f(x+)$ and $f(x-)$ exist. The result in Eq. (8) will be used to estimate the rate of convergence of Szász operator for $h \in I_{D B}$ at those points x that $f(x+)$ and $f(x-)$ exist.

2. RATE OF CONVERGENCE OF BERNSTEIN OPERATORS

In this section we consider the rate of convergence of Bernstein operator (1) for function $f \in I_{B}$. We introduce the following three quantities first

$$
\begin{aligned}
\Omega_{x-}\left(f, \delta_{1}\right) & =\sup _{t \in\left[x-\delta_{1}, x\right]}|f(t)-f(x)|, \\
\Omega_{x+}\left(f, \delta_{2}\right) & =\sup _{t \in\left[x, x+\delta_{2}\right]}|f(t)-f(x)|, \\
\Omega(x, f, \lambda) & =\sup _{t \in[x-x / \lambda, x+(1-x) / \lambda]}|f(t)-f(x)|,
\end{aligned}
$$

where $f \in I_{B}, x \in[0,1]$ is fixed, $0 \leqslant \delta_{1} \leqslant x, 0 \leqslant \delta_{2} \leqslant 1-x$ and $\lambda \geqslant 1$.
It is clear that
(i) $\Omega_{x-}\left(f, \delta_{1}\right)$ and $\Omega_{x+}\left(f, \delta_{2}\right)$ are monotone non-decreasing with respect to δ_{1} and δ_{2}, respectively; $\Omega(x, f, \lambda)$ is monotone non-increasing with respect to λ.
(ii) $\quad \lim _{\delta_{1} \rightarrow 0+} \Omega_{x-}\left(f, \delta_{1}\right)=0, \quad \lim _{\delta_{2} \rightarrow 0+} \Omega_{x+}\left(f, \delta_{2}\right)=0, \quad \lim _{\lambda \rightarrow \infty}$ $\Omega(x, f, \lambda)=0$, if f is continuous on the left, continuous on the right, or continuous at the point x, respectively.
(iii) $\Omega_{x-}\left(f, \delta_{1}\right) \leqslant \Omega\left(x, f, x / \delta_{1}\right)$ and $\Omega_{x+}\left(f, \delta_{2}\right) \leqslant \Omega\left(x, f,(1-x) / \delta_{2}\right)$.
$\underset{+(1+x) / \lambda}{(i v)} \Omega_{x-}\left(f, \delta_{1}\right) \leqslant V_{x-\delta_{1}}^{x}(f), \Omega_{x+}\left(f, \delta_{2}\right) \leqslant V_{x}^{x+\delta_{2}}(f), \Omega(x, f, \lambda) \leqslant$ $V_{x-x / \lambda}^{x+(1+x) / \lambda}(f)$,
where $V_{a}^{b}(f)$ denotes the total variation of the function f which is of bounded variation on $[a, b]$.

The main result of this section is shown below.
Theorem 1. Given $f \in I_{B}, f(x+)$ and $f(x-)$ exist at a fixed point $x \in(0,1)$. Define $g_{x}(t)$ as

$$
g_{x}(t)= \begin{cases}f(t)-f(x+), & x<t \leqslant 1 \tag{10}\\ 0, & t=x \\ f(t)-f(x-), & 0 \leqslant t<x\end{cases}
$$

Then for n sufficiently large we have

$$
\begin{align*}
& \left|B_{n}(f, x)-\frac{f(x+)+f(x-)}{2}-\frac{\mu(f, n, x)}{\sqrt{2 \pi x(1-x)} \sqrt{n}}\right| \\
& \quad \leqslant \frac{2}{n x(1-x)} \sum_{k=1}^{n} \Omega\left(x, g_{x}, \sqrt{k}\right)+o\left(n^{-1 / 2}\right) \tag{11}
\end{align*}
$$

where

$$
\begin{align*}
\mu(f, n, x)= & (f(x+)-f(x-))(n x-[n x]+(x-2) / 3) \\
& +(f(x)-f(x-))(1-\operatorname{sgn}(n x-[n x])) . \tag{12}
\end{align*}
$$

From Theorem 1 we get immediately
Corollary. Let $f \in I_{B}, f(x+)$ and $f(x-)$ exist at a fixed point $x \in(0,1)$. If $\Omega\left(x, g_{x}, \lambda\right)=o\left(\lambda^{-1}\right)$, then

$$
B_{n}(f, x)=\frac{f(x+)+f(x-)}{2}+\frac{\mu(f, n, x)}{\sqrt{2 \pi x(1-x)} \sqrt{n}}+o\left(n^{-1 / 2}\right) .
$$

To prove Theorem 1 we need a few preliminary results.
Lemma 1. For $x \in(0,1)$ there holds

$$
\begin{equation*}
p_{n,[n x]}(x)=\frac{1}{\sqrt{2 \pi x(1-x)} \sqrt{n}}+o\left(n^{-1 / 2}\right), \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{n,[n x]+1}(x)=\frac{1}{\sqrt{2 \pi x(1-x)} \sqrt{n}}+o\left(n^{-1 / 2}\right) . \tag{14}
\end{equation*}
$$

Proof. Using Stirling's formula $n!=(n / e)^{n} \sqrt{2 \pi n} e^{\theta_{n} / 12 n}, 0<\theta_{n}<1$, we have

$$
\begin{aligned}
& p_{n,[n x]}(x)-\frac{1}{\sqrt{2 \pi x(1-x)} \sqrt{n}} \\
& \quad=\frac{n!}{[n x]!(n-[n x])!} x^{[n x]}(1-x)^{n-[n x]}-\frac{1}{\sqrt{2 \pi x(1-x)} \sqrt{n}} \\
& \quad=\frac{1}{\sqrt{2 \pi x(1-x)} \sqrt{n}}\left(e^{c(n, x)}\left(\frac{n x}{[n x]}\right)^{[n x]+1 / 2}\left(\frac{n-n x}{n-[n x]}\right)^{n-[n x]+1 / 2}-1\right),
\end{aligned}
$$

where $e^{c(n, x)}=e^{\theta_{n} / 12 n-\theta_{[n x]} / 12[n x]-\theta_{n-[n x]} / 12(n-[n x])} \rightarrow 1(n \rightarrow+\infty)$.
Straightforward computation shows that

$$
\lim _{n \rightarrow \infty}\left(\frac{n x}{[n x]}\right)^{[n x]+1 / 2}\left(\frac{n-n x}{n-[n x]}\right)^{n-[n x]+1 / 2}=1
$$

Hence, (13) holds. (14) can be proved similarly.
The following Lemma is an asymptotic form of the central limit theorem in probability theory. Its proof and further discussion can be found in Feller [5, pp. 540-542].

Lemma 2. Let $\left\{\xi_{k}\right\}_{k=1}^{\infty}$ be a sequence of independent and identically distributed random variables with the expectation $E\left(\xi_{1}\right)=a_{1}$, the variance $E\left(\xi_{1}-a_{1}\right)^{2}=\sigma^{2}>0, E\left(\xi_{1}-a_{1}\right)^{3}<\infty$, and let F_{n} stand for the distribution function of $\sum_{i=1}^{n}\left(\xi_{i}-a_{1}\right) / \sigma \sqrt{n}$. If F_{n} is a lattice distribution and $F_{n}^{\#}$ is a polygonal approximant of F_{n} (see Definition 1), then the following equation holds for all the points of F_{n}

$$
\begin{equation*}
F_{n}^{\#}(t)-\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{t} e^{-\mu^{2} / 2} d u-\frac{E\left(\xi_{1}-a_{1}\right)^{3}}{6 \sigma^{3} \sqrt{n}}\left(1-t^{2}\right) \frac{1}{\sqrt{2 \pi}} e^{-t^{2} / 2}=o\left(n^{-1 / 2}\right) \tag{15}
\end{equation*}
$$

Definition 1 [5, p. 540, Definition]. Let F be concentrated on the lattice of points $b \pm n h$, but on no sublattice (that is, h is the span of F). A polygonal approximant $F^{\#}$ to F is a distribution function with a polygonal graph with vertices at the midpoints $b \pm(n+1 / 2) h$ lying on the graph of F. Thus

$$
\begin{array}{ll}
F^{\#}(t)=F(t) & \text { if } \quad t=b \pm(n+1 / 2) h ; \\
F^{\#}(t)=\frac{1}{2}[F(t)+F(t-)] & \text { if } \quad t=b \pm n h . \tag{17}
\end{array}
$$

Lemma 3. For every $x \in(0,1)$ the following equation holds

$$
\begin{equation*}
B_{n}(\operatorname{sgn}(t-x), x)=\frac{2 x-1+6(n x-[n x])-3 \operatorname{sgn}(n x-[n x])}{3 \sqrt{2 \pi x(1-x)} \sqrt{n}}+o\left(n^{-1 / 2}\right) \tag{18}
\end{equation*}
$$

Proof. Let $\left\{\xi_{i}\right\}_{i=1}^{\infty}$ be a sequence of independent random variables with the same two-point distribution $P\left(\xi_{i}=j\right)=x^{j}(1-x)^{1-j}, j=0,1$ and $x \in[0,1]$ is a parameter. Direct calculation gives $E \xi_{1}=x, E\left(\xi_{1}-E \xi_{1}\right)^{2}=x(1-x)$ and $E\left(\xi_{1}-E \xi_{1}\right)^{3}=x(1-x)(1-2 x)<\infty\left(\right.$ cf. [7, p. 14]). Let $\eta_{n}=\sum_{i=1}^{n} \xi_{i}$ and F_{n} stands for the distribution function of $\sum_{i=1}^{n}\left(\xi_{i}-a_{1}\right) / \sigma \sqrt{n}$. Then the probability distribution of the random variable η_{n} is

$$
P\left(\eta_{n}=k\right)=\binom{n}{k} x^{k}(1-x)^{n-k}=p_{n k}(x) .
$$

Hence

$$
\begin{align*}
B_{n}(\operatorname{sgn}(t-x), x) & =-\sum_{k<n x} p_{n k}(x)+\sum_{k>n x} p_{n k}(x) \\
& =-\sum_{k<n x} p_{n k}(x)-\sum_{k \leqslant n x} p_{n k}(x)+1 \\
& =-P\left(\eta_{n}<n x\right)-P\left(\eta_{n} \leqslant n x\right)+1=-F_{n}(0-)-F_{n}(0)+1 \\
& =2 F_{n}^{\#}(0)-F_{n}(0-)-F_{n}(0)+1-2 F_{n}^{\neq}(0) . \tag{19}
\end{align*}
$$

From Lemma 2 we get

$$
\begin{align*}
1-2 F_{n}^{\#}(0) & =-\frac{2 E\left(\xi_{1}-a_{1}\right)^{3}}{6 \sigma^{3} \sqrt{n}} \frac{1}{\sqrt{2 \pi}}+o\left(n^{-1 / 2}\right) \\
& =\frac{2 x-1}{3 \sqrt{2 \pi x(1-x)}} \frac{1}{\sqrt{n}}+o\left(n^{-1 / 2}\right) . \tag{20}
\end{align*}
$$

In the following we estimate $2 F_{n}^{\#}(0)-F_{n}(0-)-F_{n}(0)$.
If $n x=[n x]$, then 0 is a lattice point of F. From (17) we get

$$
2 F_{n}^{\#}(0)-F_{n}(0-)-F_{n}(0)=0 .
$$

If $n x \neq[n x]$, then

$$
F_{n}(0)=F_{n}(0-)=\sum_{k \leqslant[n x]} p_{n k}(x),
$$

and we know distribution function F is a stepfunction. Hence $F_{n}(t)=$ $\sum_{k \leqslant[n x]} p_{n k}(x)$ on the interval $[([n x]-n x) / \sigma \sqrt{n},([n x]+1-n x) / \sigma \sqrt{n})$.

For $0<n x-[n x] \leqslant 1 / 2$, from (17) and (16) it is known that

$$
F_{n}^{\#}\left(\frac{[n x]-n x}{\sigma \sqrt{n}}\right)=\frac{1}{2}\left(\sum_{k \leqslant[n x]-1} p_{n k}(x)+\sum_{k \leqslant[n x]} p_{n k}(x)\right),
$$

and

$$
F_{n}^{\#}\left(\frac{[n x]-n x+1 / 2}{\sigma \sqrt{n}}\right)=\sum_{k \leqslant[n x]} p_{n k}(x) .
$$

By direct calculation we get the expression of $F_{n}^{\#}(t)$ on interval $\llcorner([n x]-n x) /$ $\sigma \sqrt{n},([n x]-n x+1 / 2) / \sigma \sqrt{n}\rfloor$

$$
F_{n}^{\#}(t)=\sigma \sqrt{n} p_{n,[n x]}(x) t+\sum_{k \leqslant[n x]} p_{n k}(x)+(n x-[n x]-1 / 2) p_{n,[n x]}(x) .
$$

Hence, for $0<n x-[n x] \leqslant 1 / 2$

$$
F_{n}^{\#}(0)=\sum_{k \leqslant\lceil n x]} p_{n k}(x)+(n x-[n x]-1 / 2) p_{n,[n x]}(x) .
$$

Similarly, for $1 / 2<n x-[n x]<1$

$$
F_{n}^{\#}(0)=\sum_{k \leqslant[n x]} p_{n k}(x)+(n x-[n x]-1 / 2) p_{n,[n x]+1}(x) .
$$

Consequently

$$
\begin{align*}
2 F_{n}^{\#} & (0)-F_{n}(0-)-F_{n}(0) \\
& = \begin{cases}0, & n x=[n x] \\
(2 n x-2[n x]-1) p_{n,[n x]}(x), & {[n x]<n x \leqslant[n x]+1 / 2} \\
(2 n x-2[n x]-1) p_{n,[n x]+1}(x), & {[n x]+1 / 2<n x<[n x]+1 .}\end{cases} \tag{21}
\end{align*}
$$

Now (18) follows by combining (19)-(21) with Lemma 1.
Proof of Theorem 1. For any $f \in I_{B}$, if $f(x+)$ and $f(x-)$ exist at x, we decompose f into

$$
\begin{align*}
f(t)= & \frac{f(x+)+f(x-)}{2}+g_{x}(t)+\frac{f(x+)-f(x-)}{2} \operatorname{sgn}(t-x) \\
& +\delta_{x}(t)\left[f(x)-\frac{f(x+)+f(x-)}{2}\right], \tag{22}
\end{align*}
$$

where $g_{x}(t)$ is defined in (10) and

$$
\delta_{x}(t)= \begin{cases}1, & t=x \\ 0, & t \neq x .\end{cases}
$$

Direct calculation gives

$$
\begin{equation*}
B_{n}\left(\delta_{x}, x\right)=(1-\operatorname{sgn}(n x-[n x])) p_{n,[n x]}(x) . \tag{23}
\end{equation*}
$$

From (22), (23), Lemmas 1, 2, and simple computation we get

$$
\begin{equation*}
\left|B_{n}(f, x)-\frac{f(x+)+f(x-)}{2}-\frac{\mu(f, n, x)}{\sqrt{2 \pi x(1-x)}}\right| \leqslant\left|B_{n}\left(g_{x}, x\right)\right|+o\left(n^{-1 / 2}\right), \tag{24}
\end{equation*}
$$

where μ is defined in (12).
Next we estimate $\left|B_{n}\left(g_{x}, x\right)\right|$. Recall the Lebesgue-Stieltjes integral representation. We have

$$
\begin{equation*}
B_{n}\left(g_{x}, x\right)=\int_{0}^{1} g_{x}(t) d_{t} K_{n}(x, t), \tag{25}
\end{equation*}
$$

where

$$
K_{n}(x, t)= \begin{cases}\sum_{k \leqslant n t} p_{n k}(x), & 0<t \leqslant 1 \\ 0, & t=0 .\end{cases}
$$

We decompose the integral of (25) into three parts as follows:

$$
\int_{0}^{1} g_{x}(x) d_{t} K_{n}(x, t)=\Delta_{1, n}\left(g_{x}\right)+\Delta_{2, n}\left(g_{x}\right)+\Delta_{3, n}\left(g_{x}\right),
$$

where

$$
\begin{aligned}
& \Delta_{1, n}\left(g_{x}\right)=\int_{0}^{x-x / \sqrt{n}} g_{x}(t) d_{t} K_{n}(x, t), \\
& \Delta_{2, n}\left(g_{x}\right)=\int_{x-x / \sqrt{n}}^{x+(1-x) / \sqrt{n}} g_{x}(t) d_{t} K_{n}(x, t) \\
& \Delta_{3, n}\left(g_{x}\right)=\int_{x+(1-x) / \sqrt{n}}^{1} g_{x}(t) d_{t} K_{n}(x, t) .
\end{aligned}
$$

We shall evaluate $\Delta_{1, n}\left(g_{x}\right), \Delta_{2, n}\left(g_{x}\right)$ and $\Delta_{3, n}\left(g_{x}\right)$ with the quantities $\Omega_{x-}\left(g_{x}, \delta_{1}\right), \Omega_{x+}\left(g_{x}, \delta_{2}\right)$ and $\Omega\left(x, g_{x}, \lambda\right)$ (for simplicity, in the following we shall write them as $\Omega_{x-}\left(\delta_{1}\right), \Omega_{x+}\left(\delta_{2}\right)$ and $\Omega(x, \lambda)$, respectively). First, for $\Delta_{2, n}\left(g_{x}\right)$ note that $g_{x}(x)=0$, we have

$$
\begin{equation*}
\left|U_{2, n}\left(g_{x}\right)\right| \leqslant \int_{x-x / \sqrt{n}}^{x+(1-x) / \sqrt{n}}\left|g_{x}(t)-g_{x}(x)\right| d_{t} K_{n}(x, t) \leqslant \Omega(x, \sqrt{n}) . \tag{26}
\end{equation*}
$$

To estimate $\left|\Delta_{1, n}\left(g_{x}\right)\right|$, note that $\Omega_{x-}\left(\delta_{1}\right)$ is monotone non-decreasing for δ_{1}, hence it follows that

$$
\left|\Delta_{1, n}\left(g_{x}\right)\right|=\left|\int_{0}^{x-x / \sqrt{n}} g_{x}(t) d_{t} K_{n}(x, t)\right| \leqslant \int_{0}^{x-x / \sqrt{n}} \Omega_{x-}(x-t) d_{t} K_{n}(x, t) .
$$

Using partial integration with $y=x-x / \sqrt{n}$, we have

$$
\begin{align*}
& \int_{0}^{x-x / \sqrt{n}} \Omega_{x-}(x-t) d_{t} K_{n}(x, t) \\
& \quad \leqslant \Omega_{x-}(x-y) K_{n}(x, y+)+\int_{0}^{y} \hat{K}_{n}(x, t) d\left(-\Omega_{x-}(x-t)\right), \tag{27}
\end{align*}
$$

where $\hat{K}_{n}(x, t)$ is the normalized form of $K_{n}(x, t)$. Since $\hat{K}_{n}(x, t) \leqslant K_{n}(x, t)$ and $K_{n}(x, y+)=K_{n}(x, y)$ on (0,1), from (27) and using the well-known result $\hat{K}_{n}(x, t) \leqslant K_{n}(x, t) \leqslant \sum_{k \leqslant n t} p_{n k}(x) \leqslant x(1-x) / n(t-x)^{2}$ it follows that

$$
\begin{equation*}
\left|\Delta_{1, n}\left(g_{x}\right)\right| \leqslant \Omega_{x-}(x-y) \frac{x(1-x)}{n(x-y)^{2}}+\frac{x(1-x)}{n} \int_{0}^{y} \frac{1}{(x-t)^{2}} d\left(-\Omega_{x-}(x-t)\right) \tag{28}
\end{equation*}
$$

With the fact that

$$
\begin{aligned}
\int_{0}^{y} & \frac{1}{(x-t)^{2}} d\left(-\Omega_{x-}(x-t)\right) \\
& =-\left.\frac{1}{(x-t)^{2}} \Omega_{x-}(x-t)\right|_{0} ^{y}+\int_{0}^{y} \Omega_{x-}(x-t) \frac{2}{(x-t)^{3}} d t \\
& =-\frac{1}{(x-y)^{2}} \Omega_{x-}(x-y)+\frac{1}{x^{2}} \Omega_{x-}(x)+\int_{0}^{y} \Omega_{x-}(x-t) \frac{2}{(x-t)^{3}} d t
\end{aligned}
$$

we have from (28)

$$
\left|\Delta_{1, n}\left(g_{x}\right)\right| \leqslant \frac{x(1-x)}{n x^{2}} \Omega_{x-}(x)+\frac{x(1-x)}{n} \int_{0}^{x-x / \sqrt{n}} \Omega_{x-}(x-t) \frac{2}{(x-t)^{3}} d t .
$$

Putting $t=x-x / \sqrt{u}$ for the last integral we get

$$
\int_{0}^{x-x / \sqrt{n}} \Omega_{x-}(x-t) \frac{2}{(x-t)^{3}} d t=\frac{1}{x^{2}} \int_{1}^{n} \Omega_{x-}(x / \sqrt{u}) d u .
$$

Consequently

$$
\begin{equation*}
\left|\Delta_{1, n}\left(g_{x}\right)\right| \leqslant \frac{1-x}{n x}\left(\Omega_{x-}(x)+\int_{1}^{n} \Omega_{x-}(x / \sqrt{u}) d u\right) . \tag{29}
\end{equation*}
$$

Using a similar method to estimate $\left|\Delta_{3, n}\left(g_{x}\right)\right|$, we get

$$
\begin{equation*}
\left|\Delta_{3, n}\left(g_{x}\right)\right| \leqslant \frac{x}{n(1-x)}\left(\Omega_{x+}(1-x)+\int_{1}^{n} \Omega_{x+}((1-x) / \sqrt{u}) d u\right) . \tag{30}
\end{equation*}
$$

From (26), (29) and (30) it follows that

$$
\begin{equation*}
\left|B_{n}\left(g_{x}, x\right)\right| \leqslant \Omega(x, \sqrt{n})+\left(\frac{1-x}{n x}+\frac{x}{n(1-x)}\right)\left(\Omega(x, 1)+\int_{1}^{n} \Omega(x, \sqrt{u}) d u\right) . \tag{31}
\end{equation*}
$$

By monotonicity of $\Omega(x, \lambda)$ and the fact that $(1-x)^{2}+x^{2} \leqslant 1,1 /(n-1) \leqslant$ $1 / n x(1-x)(n>1)$ we have

$$
\begin{align*}
\left|B_{n}\left(g_{x}, x\right)\right| \leqslant & \frac{1}{n-1} \sum_{k=2}^{n} \Omega(x, \sqrt{k})+\frac{1}{n x(1-x)} \Omega(x, 1) \\
& +\frac{1}{n x(1-x)} \sum_{k=1}^{n} \Omega(x, \sqrt{k}) \\
\leqslant & \frac{2}{n x(1-x)} \sum_{k=1}^{n} \Omega(x, \sqrt{k}) . \tag{32}
\end{align*}
$$

Theorem 1 now follows from (24) and (32).

3. RATE OF CONVERGENCE OF SZÁSZ OPERATORS

In this section we consider the rate of convergence of Szász operator (2) for function $h \in I_{D B}$ (defined in (9)). First we introduce the quantity

$$
\Omega^{*}(x, f, \delta)=\sup _{t \in[x-\delta, x+\delta]}|f(t)-f(x)|,
$$

where f is bounded in every finite subinterval of $[0, \infty)$.

The main result of this section is as follows:
Theorem 2. Let h be a function in $I_{D B}$ and let $h(t)=O\left(e^{\alpha t \log t}\right)$ for some $\alpha>0$ as $t \rightarrow \infty$. If $f(x+)$ and $f(x-)$ exist at a fixed point $x \in(0, \infty)$, and we write $\tau=f(x+)-f(x-)$, then for n sufficiently large we have

$$
\begin{align*}
\left|S_{n}(h, x)-h(x)-\tau(x / 2 \pi)^{1 / 2} \frac{1}{\sqrt{n}}\right| \leqslant & \frac{|\tau|}{n^{3 / 2} x^{1 / 2}}+\frac{4 x+2}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega^{*}\left(x, \varphi_{x}, x / k\right) \\
& +O(1) \frac{(2 x+1)^{(2 x+1) \alpha}}{1+\sqrt{n x}}(e / 4)^{n x}, \tag{33}
\end{align*}
$$

where $[\sqrt{n}]$ is the greatest integer not exceeding \sqrt{n} and $\varphi_{x}(t)$ is defined as

$$
\varphi_{x}(t)= \begin{cases}f(t)-f(x+), & x<t<\infty \\ 0, & t=x \\ f(t)-f(x-), & 0 \leqslant t<x\end{cases}
$$

In view of the fact that $(1 / \sqrt{n}) \sum_{k=1}^{[\sqrt{n}]} \Omega\left(x, \varphi_{x}, k\right) \rightarrow 0(n \rightarrow \infty)$, from Theorem 2 we get the following asymptotic formula

$$
\begin{equation*}
S_{n}(h, x)=h(x)+(x / 2 \pi)^{1 / 2} \frac{\tau}{\sqrt{n}}+o\left(\frac{1}{\sqrt{n}}\right) \tag{34}
\end{equation*}
$$

if h satisfies the assumptions of Theorem 2. In particular, (34) is true for $h \in \operatorname{DBV}[0, \infty)$. For Bernstein operator $B_{n}(h, x)$ Bojanic and Cheng [2] proved a similar asymptotic formula for $h \in D B V[0,1]$.

The following lemma is needed for proving Theorem 2.
Lemma 4. For $x \in[0, \infty)$ there holds

$$
\begin{equation*}
n^{3 / 2} \sqrt{x}\left|S_{n}(|t-x|, x)-\sqrt{\frac{2 x}{\pi}} \frac{1}{\sqrt{n}}\right| \leqslant 2 . \tag{35}
\end{equation*}
$$

Proof. By the fact that $S_{n}(t, x)=x$ we have

$$
\begin{aligned}
S_{n}(|t-x|, x) & =2 \sum_{k=0}^{[n x]}\left(x-\frac{k}{n}\right) \frac{(n x)^{k}}{k!} e^{-n x} \\
& =2 \sum_{k=0}^{[n x]} x \frac{(n x)^{k}}{k!} e^{-n x}-2 \sum_{k=0}^{[n x]-1} x \frac{(n x)^{k}}{k!} e^{-n x} \\
& =2 x e^{-n x} \frac{(n x)^{[n x]}}{[n x]!} .
\end{aligned}
$$

If $x<1 / n$, then $[n x]=0$. Obviously, $0 \leqslant 2 \sqrt{n x} e^{-n x} \leqslant 2$.

Hence

$$
n^{3 / 2} \sqrt{x}\left|S_{n}(|t-x|, x)-\sqrt{\frac{2 x}{\pi}} \frac{1}{\sqrt{n}}\right|=n x\left|2 \sqrt{n x} e^{-n x}-\sqrt{\frac{2}{\pi}}\right| \leqslant 2 .
$$

If $x \geqslant 1 / n$, then $[n x] \geqslant 1$. Using Stirling's formula $n!=(n / e)^{n} \sqrt{2 \pi n} e^{\theta_{n} / 12 n}$, $0<\theta_{n}<1$, we get

$$
\begin{aligned}
n^{3 / 2} & \sqrt{x}\left(S_{n}(|t-x|, x)-\sqrt{\frac{2 x}{\pi}} \frac{1}{\sqrt{n}}\right) \\
& =\sqrt{\frac{2}{\pi}} n x\left(e^{-n x+[n x]}\left(\frac{n x}{[n x]}\right)^{[n x]+1 / 2} e^{c}-1\right) \\
& =\sqrt{\frac{2}{\pi}} n x\left(e^{c}-1\right)+e^{c} \sqrt{\frac{2}{\pi}} n x\left(e^{-n x+[n x]}\left(\frac{n x}{[n x]}\right)^{[n x]+1 / 2}-1\right),
\end{aligned}
$$

where

$$
\begin{equation*}
e^{-1 /(12[n x])} \leqslant e^{c} \leqslant 1 . \tag{36}
\end{equation*}
$$

Thus, from expansion formula $e^{c}=\sum_{i=0}^{\infty} c^{i} / i!$, it is not difficult to show that

$$
n x\left|e^{c}-1\right| \leqslant 1 / 4 .
$$

On the other hand, write $n x=[n x]+\varepsilon(0 \leqslant \varepsilon<1)$, then

$$
\begin{aligned}
e^{c} & \sqrt{\frac{2}{\pi}} n x\left|e^{-n x+[n x]}\left(\frac{n x}{[n x]}\right)^{[n x]+1 / 2}-1\right| \\
& =e^{c} \sqrt{\frac{2}{\pi}} \frac{n x}{[n x]}[n x]\left|e^{-\varepsilon}\left(1+\frac{\varepsilon}{[n x]}\right)^{[n x]+1 / 2}-1\right| \\
& =e^{c} \sqrt{\frac{2}{\pi}} \frac{n x}{[n x]}[n x]\left(e^{-\varepsilon}\left(1+\frac{\varepsilon}{[n x]}\right)^{[n x]+1 / 2}-1\right) \\
& \leqslant 2 \sqrt{\frac{2}{\pi}}[n x]\left(e^{-\varepsilon}\left(1+\frac{\varepsilon}{[n x]}\right)^{[n x]+1 / 2}-1\right) .
\end{aligned}
$$

It is easy to verify that

$$
[n x]\left(e^{-\varepsilon}\left(1+\frac{\varepsilon}{[n x]}\right)^{[n x]+1 / 2}-1\right) \leqslant \varepsilon \leqslant 1 .
$$

Consequently

$$
n^{3 / 2} \sqrt{x}\left|S_{n}(|t-x|, x)-\sqrt{\frac{2 x}{\pi}} \frac{1}{\sqrt{n}}\right| \leqslant \frac{\sqrt{2}}{4 \sqrt{\pi}}+\frac{2 \sqrt{2}}{\sqrt{\pi}} \leqslant 2 .
$$

The proof of Lemma 4 is completed.
Proof of Theorem 2. By straightforward computation we find that (cf. [2, pp. 138-139])

$$
\begin{align*}
S_{n}(h, x)-h(x)= & \frac{f(x+)-f(x-)}{2} S_{n}(|t-x|, x) \\
& -L_{n}(h, x)+R_{n}(h, x)+Q_{n}(h, x), \tag{37}
\end{align*}
$$

where

$$
\begin{aligned}
& L_{n}(h, x)=\sum_{k<n x}\left(\int_{k / n}^{x} \varphi_{x}(t) d t\right) q_{n k}(x), \\
& R_{n}(h, x)=\sum_{n x<k \leqslant 2 n x}\left(\int_{x}^{k / n} \varphi_{x}(t) d t\right) q_{n k}(x)
\end{aligned}
$$

and

$$
Q_{n}(h, x)=\sum_{k>2 n x}\left(\int_{k / n}^{x} \varphi_{x}(t) d t\right) q_{n k}(x) .
$$

Define

$$
\tilde{K}_{n}(x, t)=\sum_{k \leqslant n t} q_{n k}(x), \quad 0 \leqslant t \leqslant x .
$$

Then

$$
\begin{aligned}
L_{n}(h, x)= & \int_{0}^{x}\left(\int_{t}^{x} \varphi_{x}(v) d v\right) d_{t} \tilde{K}_{n}(x, t)+\left(\int_{0}^{x} \varphi_{x}(v) d v\right) \tilde{K}_{n}(x, 0) \\
= & \left.\left(\int_{t}^{x} \varphi_{x}(v) d v\right) \tilde{K}_{n}(x, t)\right|_{0} ^{x}+\int_{0}^{x} \tilde{K}_{n}(x, t) \varphi_{x}(t) d t \\
& +\left(\int_{0}^{x} \varphi_{x}(v) d v\right) \tilde{K}_{n}(x, 0) \\
= & \int_{0}^{x} \tilde{K}_{n}(x, t) \varphi_{x}(t) d t=\left(\int_{0}^{x-x / \sqrt{n}}+\int_{x-x / \sqrt{n}}^{x}\right) \tilde{K}_{n}(x, t) \varphi_{x}(t) d t .
\end{aligned}
$$

Since $\varphi_{x}(x)=0, \widetilde{K}_{n}(x, t) \leqslant 1$, by monotonicity of $\Omega^{*}\left(x, \varphi_{x}, \delta\right)$ we have

$$
\left|\int_{x-x / \sqrt{n}}^{x} \tilde{K}_{n}(x, t) \varphi_{x}(t) d t\right| \leqslant \frac{x}{\sqrt{n}} \Omega^{*}\left(x, \varphi_{x}, x / \sqrt{n}\right) \leqslant \frac{2 x}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega^{*}\left(x, \varphi_{x}, x / k\right) .
$$

Again, for $t<x$ it is known that $\tilde{K}_{n}(x, t)=\sum_{k \leqslant n t} q_{n k}(x) \leqslant\left(1 /(x-t)^{2}\right)$ $S_{n}\left((t-x)^{2}, x\right) \leqslant x / n(x-t)^{2}$. Hence

$$
\left|\int_{0}^{x-x / \sqrt{n}} \tilde{K}_{n}(x, t) \varphi_{x}(t) d t\right| \leqslant \frac{x}{n} \int_{0}^{x-x / \sqrt{n}} \Omega^{*}\left(x, \varphi_{x}, x-t\right) \frac{d t}{(x-t)^{2}} .
$$

Replacing the variable t by $x-x / u$ for the last integral, then

$$
\begin{aligned}
\left|\int_{0}^{x-x / \sqrt{n}} \tilde{K}_{n}(x, t) \varphi_{x}(t) d t\right| & \leqslant \frac{x}{n x} \int_{1}^{\sqrt{n}} \Omega^{*}\left(x, \varphi_{x}, x / u\right) d u \\
& \leqslant \frac{1}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega^{*}\left(x, \varphi_{x}, x / k\right)
\end{aligned}
$$

Consequently

$$
\begin{equation*}
\left|L_{n}(h, x)\right| \leqslant \frac{2 x+1}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega^{*}\left(x, \varphi_{x}, x / k\right) . \tag{38}
\end{equation*}
$$

A similar estimate gives

$$
\begin{equation*}
\left|R_{n}(h, x)\right| \leqslant \frac{2 x+1}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega^{*}\left(x, \varphi_{x}, x / k\right) . \tag{39}
\end{equation*}
$$

Finally by the assumption $h(t)=O\left(e^{\alpha t \log t}\right)$ for some $\alpha>0$ as $t \rightarrow \infty$, and by direct computation it can be shown that (cf. [9, (31), p. 320])

$$
\begin{equation*}
\left|Q_{n}(h, x)\right|=O(1) \frac{(2 x+1)^{(2 x+1) \alpha}}{1+\sqrt{n x}}(e / 4)^{n x} . \tag{40}
\end{equation*}
$$

Theorem 2 now follows by combining (37)-(40) with Lemma 4.
Remark. If f is continuous at x, then (11) becomes

$$
\begin{equation*}
\left|B_{n}(f, x)-f(x)\right| \leqslant \frac{2}{n x(1-x)} \sum_{k=1}^{n} \Omega(x, f, \sqrt{k}) \tag{41}
\end{equation*}
$$

and (33) becomes

$$
\begin{equation*}
\left|S_{n}(h, x)-h(x)\right| \leqslant \frac{4 x+2}{n} \sum_{k=1}^{[\sqrt{n}]} \Omega^{*}\left(x, \varphi_{x}, x / k\right)+O(1) \frac{(2 x+1)^{(2 x+1) \alpha}}{1+\sqrt{n x}}(e / 4)^{n x} \tag{42}
\end{equation*}
$$

Inequalities (41) and (42) are the best possible we can get in the sense that they cannot be improved any further asymptotically (see [1, 4, and 8]).

ACKNOWLEDGMENT

The authors thank the associate editor for several important comments and suggestions which improve the quality of the paper significantly.

REFERENCES

1. F. Cheng, On the rate of convergence of Bernstein polynomials of functions of bounded variation, J. Approx. Theory 39 (1983), 259-274.
2. R. Bojanic and F. Cheng, Rate of convergence of Bernstein polynomials for functions with derivative of bounded variation, J. Math. Anal. Appl. 141 (1989), 136-151.
3. S. Guo and M. Khan, On the rate of convergence of some operators on functions of bounded variation, J. Approx. Theory 58 (1989), 90-101.
4. X. M. Zeng and A. Piriou, On the rate of convergence of two Bernstein-Bézier type operators for functions of bounded variation, J. Approx. Theory 95 (1998), 369-387.
5. W. Feller, "An Introduction to Probability Theory and Its Applications," Wiley, New York, 1971.
6. R. Bojanic and M. Khan, Rate of convergence of some operators of functions with derivatives of bounded variation, Atti Sem Mat. Fis. Univ. Modena 39 (1991), 495-512.
7. G. G. Lorentz, "Bernstein Polynomials," Univ. of Toronto Press, Toronto, 1953.
8. F. Cheng, On the rate of convergence of Szász-Mirakyan operator for functions of bounded variation, J. Approx. Theory 40 (1984), 226-241.
9. X. M. Zeng, On the rate of convergence of the generalized Szász type operators for functions of bounded variation, J. Math. Anal. Appl. 226 (1998), 309-325.
